
CROSSTALK The Journal of Defense Software Engineering 21November 1998

Increased demand for reliable
and useful software applications
has led to generations of advance-

ments in software languages and devel-
opment environments. Examples include
• The evolution from early languages,

such as assembly language, to
higher-order languages and fourth-
generation languages.

• The development and implementa-
tion of frameworks or software engi-
neering environments that are
populated with any number of pro-
ductivity tools.

• The development of graphical (or
visual) front-ends for existing com-
puter languages called VPEs.

• The development and use of VLs
that allow developers to generate
applications entirely within a visual
environment.
Currently, the use of VPEs and VLs

for general-purpose programming is
undergoing such rapid adoption that it
could be called a visual explosion. Appli-
cations developed using VPEs and VLs
are developed rapidly and differently
from applications based entirely on
textual languages. It is important to
understand these differences and to
approach managing projects that use
VPEs and VLs in a way that will allow
effective project control, i.e., delivering
quality software on time and within
budget without interfering with the
advantages inherent in the use of visual
tools.

Definitions
The following definitions are used to
help form a context for the tools used
to build applications visually.

• Visual Language – A computer
language that uses a visual syntax,
such as pictures or forms, to express
programs. Text can be part of a
visual syntax.

• VL Taxonomy – A system to clas-
sify VLs.

• Visual Programming – Software
development that uses a visual rep-
resentation of the software and
allows developers to create software
through managing and manipulat-
ing objects on a visual palette. Also
called graphical programming.

• Visual Programming Environment –
The graphical user interface (GUI)
and graphical tools that are used to
manage and manipulate objects on a
visual palette, construct programs,
interface with other software, man-
age the software, and execute the
software.
This article provides a summary of

recent research concerning the use of
VLs and VPEs. The study reviewed the
state of the practice for developing
software using VLs and managing the
development activities. Our research
revealed that there is little evidence of
the use of mature practices and recom-
mends candidate metrics for VLs and
VPEs as a first step toward a method to
estimate the effort required to develop
software using VLs and VPEs.

Purpose of the Research
VLs and VPEs are being studied to
learn how to estimate and manage soft-
ware development using these new
languages and environments. The goals
of this initial research are to

• Identify “countables” or metrics
related to VL and VPE development
processes and software products.

• Develop an estimation model for
software developed visually, i.e.,
using VLs and VPEs.
VLs and VPEs are of interest be-

cause they are presently being used to
develop real applications in a range of
sizes and degrees of criticality. Examples
include
• GUI and GUI-related application

development.
• Database search engines, e.g., visual

query languages.
• Data capture and maintenance.
• Real-time data presentation.
• Space-qualified guidance, naviga-

tion, and control.
• Other real-time control systems,

including aerospace and automotive
applications.
With all this activity, little evidence

has been found that mature practices
are being used to manage development
using VLs and VPEs. These types of
languages are reported to be “fun to
use,” and the literature has yet to ad-
dress the management issues that may
be involved in moving from a textual
model to a visual model of software
development.

In addition, no evidence was found
that groups using VLs and VPEs use a
repeatable method to estimate develop-
ment cost, effort, size, or schedule. The
issues of developing large-scale applica-
tions where formal estimates and man-
agement tracking are important have
only recently been addressed at any level,
and the research is still in its infancy.

Metrics for Visual Software Development
Initial Research and Findings

Paul A. Szulewski, Mercury Computer Systems
Faye C. Budlong, Draper Laboratory

This article provides a summary of recent research that investigated the use of visual languages (VLs)
and visual programming environments (VPEs). The study reviewed the state of the practice for devel-
oping software using VLs and managing these development activities. The study concluded that there
is little evidence of the use of mature practices and recommends candidate metrics for VLs and VPEs
as a first step toward a method to estimate the effort required to develop software using VLs and VPEs.



22 CROSSTALK The Journal of Defense Software Engineering November 1998

Software Engineering Technology

Initial Results
The research focused on six specific
areas:
• Finding definitions for visual lan-

guages.
• Identifying examples of commercially

available VL and VPE products.
• Identifying published productivity

gains and other benefits of using VLs
and VPEs.

• Finding evidence of VL and VPE use
in government software applications.

• Examining current VL-related mea-
surement work.

• Identifying potential metrics for VL
and VPE development.

Examples
Tables 1 and 2 provide a limited set of
examples of commercially available VLs
and VPEs, respectively. The examples
provide comparisons between VLs and
VPEs, e.g., the output from a VPE
generally is code for a specific textual
programming language, and they indi-
cate the variety of domains currently
served by VLs and VPEs.

Advantages and
Disadvantages
Developing software visually has a
number of advantages and disadvan-
tages, which are summarized in the
following paragraphs. Support for the
advantages regarding quick results and
potential increases in developer produc-
tivity are documented in the literature
on visual programming. For example,
• An empirical study reports that it is

easier to write programs visually
than textually [1].

• Comparative studies report that
there is a four to 10 times produc-

tivity gain over traditional program-
ming techniques when working in a
visual environment [2].

• A more recent empirical study con-
cludes that visual representation
improves human performance [3].

Advantages
Advantages gained through using VLs
and VPEs include the following:
• They provide an opportunity for

domain engineers, rather than soft-
ware engineers, to develop software
applications.

• Visual communication is intuitive—
visual communication uses pictures
rather than words (code).

• They provide quick initial results—
you can examine the results some-
times within hours rather than
months.

• Rather than using formal specifica-
tions to guide development, they
provide a means to implement par-
ticipatory development approaches
using prototyping techniques and
“conversations.”

• They take advantage of powerful
workstations and tools by providing

the capability to work with pictures
rather than words.

• They provide the potential to in-
crease software development pro-
ductivity.

• They provide the potential to lower
lifecycle costs.

Disadvantages
There are some potential problems that
may be expected from using VLs and
VPEs. These disadvantages are derived
from discussions with managers and
software developers who work with VLs
and VPEs.
• VLs and VPEs require a new way of

doing business throughout the soft-
ware lifecycle, including develop-
ment, test, acceptance, and mainte-
nance—the rules have been
significantly changed.

• Programmers (or software engi-
neers) are not required; however, the
quality of software produced by
domain engineers may be suspect.
(It is too easy to jump right in and
program.)

• No industry standards are in place to
control the visual languages and
environments. More traditional
languages, e.g., C and Ada, are stan-
dardized through concurrence of
members of the software engineering
community and maintenance by
standards organizations. This control
does not yet exist for VLs and VPEs.

• Little or no formal qualification is
done for new applications because
of the lack of specifications and
known requirements.

• Often, especially for VLs, the bind-
ings to other languages are weak or
nonexistent.

Table 1. Examples of commercially available VLs.

Table 2. Examples of commercially available VPEs.

gnimmargorPlausiV
tnemnorivnE

retupmoC
tuptuOegaugnaL

rodneV sniamoD

remmargorPlautriV 59adAdna++C PROCZV tnempoleveDdesaB-tnenopmoCesopruPlareneG

XxirtaM yrateirporP,59adA,C
egaugnaLgnitpircS

ISI smetsySlortnoC

PXV fitoM FSOmorfeerF snoitacilppAXrofredliuBIUG

éfaC avaJ cetnamyS snoitacilppAtenartnIdnatenretnI

egaugnaL rodneV sniamoD

WEIVbaL stnemurtsnIlanoitaN noitisiuqcAataD , sisylanA , yalpsiDdna

redliuBteNsuirotciP/hpargorP suirotciP snoitacilppAhsotnicaM

redliuBppAlausiV llevoN snoitacilppArevreSswodniW

EEV drakcaPttelweH tnempiuqEtseT

redliuBrewoP yrdnuoFerawtfoSnitsuA snoitacilppAswodniW



CROSSTALK The Journal of Defense Software Engineering 23November 1998

Metrics for Visual Software Development: Initial Research and Findings

• Configuration control is not often
considered, and the visual represen-
tations may be difficult to control
using current commercially available
configuration management tools.

• Development issues can be decep-
tively complex.

• The apparent ease of use for these
tools invites abuse.

New Development Models
New software development models are
rapidly evolving as VL and VPE applica-
tions become more accepted. In general,
these models are typified as being highly
participatory with developers and users
or other domain experts working closely
to develop each application. The appli-
cation tends to be its own “specification”
where little upfront documentation is
developed and “approved” in the tradi-
tional sense of approval.

Participatory development styles
tend to involve developers, users, and
other stakeholders in several ways, in-
cluding
• A conversation model where the

software developer and user work
together with the computer to inter-
actively build an application [4].

• “Memos and demos” that allow
multiple iterations with docu-
mented output, high user visibility,
and minimal specification.

• Evolutionary development using an
integrated small “hot team” that
consists of software developers,
domain engineers, and other stake-

holders to concurrently develop an
application and gain approval of it.
These approaches show many simi-

larities with rapid prototyping, includ-
ing strong user (or customer) interac-
tion during development. The software
is developed, used, and refined as neces-
sary, based on lessons learned, rather
than waiting for traditional qualifica-
tion or validation.

In general, formal milestones, e.g.,
requirements and design reviews, often
are either missing or ill-defined. There
are often no (or limited) formal reviews.
Requirements and design are implicit in
an acceptable application. Usually, the
electronic design as implemented is the
only representation of the application.
There is often either limited or no for-
mal testing. The project is done when
the user and the developer agree that it
is, or when the money runs out.

Critical government application
development using VLs and VPEs have
a somewhat different approach—at-
tempts have been made to integrate
evolutionary development with formal
documentation and decision points.
However, the concept of application
development and testing appears to
need further refinement. Some of the
questions that should be addressed to
provide confidence in these applications
include
• What is a visual software “unit”?
• How detailed are the requirements?
• How do you verify software for

critical applications?
• Is there a new concept of complexity?

Evidence of Government Use
Table 3 provides examples of govern-
ment agencies that have used VLs or
VPEs to help meet their software needs,
the name of the VL or VPE used, the
application domain in which the VL or
VPE is used, and a brief description of
the program or application area. Many
other examples could be cited, but these
provide an indication of the breadth of
government applications being devel-
oped using VLs and VPEs.

VL-Related Software
Measurement
Some inroads have been made into de-
fining measures that are applicable to
VLs and VPEs. Empirical information
has been gathered, as previously dis-
cussed, and some related studies have
been completed. In addition, some com-
mercial information has been developed
that may be applicable to software devel-
oped visually. Examples include
• Studies such as Jeffrey V. Nickerson’s

“Visual Programming” [5] and E.
Glinert’s “Towards Software Metrics
for Visual Programming” [6].

• Commercial information such as
“Project Management for OO De-
velopment” [7] and “Counting a
GUI Application” [8].
This information leads to the con-

clusion that a number of “countables”
can be defined to support definition of
VL metrics. Candidate countables are
discussed in the next section.

Candidate Metrics for VLs and
VPEs
The countable items currently being
considered as candidates for further
research fall into four categories. Ex-
amples of each of these categories along
with possible advantages and disadvan-
tages follow.

Physical Measures
Physical measures are measures of the
outputs from the development effort.
Those identified include the following:
• Run-time memory size, e.g., kilo-

bytes or megabytes of memory.
Advantages: Provides hard data that
can be compared to applications

Table 3. Evidence of government applications using visual languages.

tnemnrevoG
ycnegA

EPVroLV niamoD noitpircseD

LPJ/ASAN WEIVbaL sisylanAataD noissiMoelilaGrofrezylanAataDyrtemeleT

ymrA.S.U WEIVbaL sisylanAataD ecafretnIresUlacihparG

ecroFriA.S.U WEIVbaL ataDtnemurtsnI
sisylanA

looTnoitaulavEnoitatnemurtsnIenolA-dnatS

LPJ/ASAN EEV lortnoCtnemurtsnI scinortcelEthgilFfotseTehttroppuSoterawtfoS

ASAN XxirtaM smetsySlortnoC noitatSecapSlanoitanretnI

ecroFriA.S.U remmargorPlautriV
59adA

stnenopmoCadA EPVderosnopS-eciffOmargorPtnioJadA
noitadilav



24 CROSSTALK The Journal of Defense Software Engineering November 1998

Software Engineering Technology

built using traditional textual lan-
guages.
Disadvantages: May not correlate
well with effort for applications
that need to be extremely efficient,
e.g., real-time embedded systems
with processor limitations. Size of
application could grow substan-
tially with unnecessary features, use
of interpretive (rather than com-
piled) languages, etc.

• Processor(s) utilization, e.g., cycle
time, number of cycles used, and
percent of processor resources re-
quired to run an application.
Advantages: Provides hard data that
can be compared to applications
built using traditional textual lan-
guages.
Disadvantages: May not correlate well
with effort for applications that need
to be extremely efficient, e.g., real-
time embedded systems with proces-
sor limitations. Size of application
could grow substantially when pro-
cessor utilization is not considered to
be application critical, e.g., for data
systems or other systems where
memory and processing time do not
need to be optimized. Interpretive
language applications generally use
significantly more processing re-
sources than compiled applications,
may be much easier to develop and
verify, and may provide substantially
less functionality when compared
with compiled counterparts.

• Source lines of code (SLOC)
equivalents, e.g., high-level lan-
guage SLOC outputs from a VPE
and functional cell contents from a
spreadsheet.
Advantages: SLOC are still the most
used indicators of application size
and allow data to be normalized
based on an understandable con-
cept. The concept of SLOC is gen-
erally understandable to software
managers.
Disadvantages: The concept of
SLOC may not be in any way appli-
cable to some VLs. A clear defini-
tion of SLOC needs to be used
consistently to obtain consistent
results. Where SLOC are automati-
cally generated from a VPE, derived

measures such as descriptiveness
may not be useful or applicable.
There are likely to be differences in
SLOC output depending on
whether the count is of automati-
cally generated code from a VPE or
hand-generated script code that may
be an adjunct to the visual aspects of
a VL or VPE.

Countables in the Visual Medium
These items are entities in the physical
design representation. They include
• Objects (number, semantic com-

plexity), e.g., items on a diagram,
number of diagrams, and complex-
ity of the content of a diagram or
item on a diagram.
Advantages: Objects can be visually
examined and counted. Within a
single language or environment,
object counts should yield repeat-
able results across several applica-
tions. This metric should help to
quantify effort and schedule when
combined with other measures such
as number of connectors, number of
interconnections, and some concept
of inheritance. Some work already
has been completed on complexity
of applications developed with VLs.
Disadvantages: May not be compa-
rable across languages or environ-
ments. May not be easy to estimate
until a design is well under way.

• Connectors (number, data complex-
ity, control complexity), e.g., con-
nectors between items on a diagram
or indicating interfaces to items on
connecting diagrams.
Advantages: Connectors can be visu-
ally examined and counted. Within
a single language or environment,
connector counts should yield re-
peatable results across several appli-
cations. This metric should help
quantify effort and schedule when
combined with other measures such
as number of objects and some
concept of bandwidth.
Disadvantages: May not be compa-
rable across languages or environ-
ments. May not be easy to estimate
until a design is well under way.

OO-Related Measures
These items include measures that have
been developed for object-oriented
(OO) applications. There is an inherent
assumption in these measures that ap-
plications developed visually use an
extended concept of object orientation.
Thus, the candidate measures include
• Inheritance, e.g., depth of inherit-

ance and number of children within
a class.
Advantages: Can be counted in a
design medium. If OO develop-
ment techniques are used, will pro-
vide one of the primary OO mea-
sures of complexity.
Disadvantages: Provides a secondary
input to estimation needs. Provides
a measure of complexity more than
a measure of size. May be useful to
support estimates of test effort for
an OO application. VL develop-
ment may not use OO techniques.

• Encapsulation, e.g., measures of
how well a class (with its subclasses)
provides information hiding and
consistent object representation
from a single (or minimal number
of ) source(s). Examples are lack of
cohesion in methods or coupling
between classes.
Advantages: Measures of encapsula-
tion provide an indication of the
quality and maintainability of an
OO application. Can be counted in
a design medium. Also provide an
indication of the effort required to
test an application thoroughly.
Disadvantages: Provides a secondary
input to estimation needs. Provides
measures of design quality, under-
standability, and complexity more
than measures of size. May be useful
to support estimates of test effort for
an OO application. VL develop-
ment may not use OO techniques.

• Number of interconnections, e.g.,
counts of “uses” and “used by” for a
class or all classes within an applica-
tion. Also could be counts of inter-
faces with external items.
Advantages: Combined with number
of classes in an application, provides
a primary indication of application
size and a “quick” estimate of appli-
cation complexity. Can be counted



CROSSTALK The Journal of Defense Software Engineering 25November 1998

Metrics for Visual Software Development: Initial Research and Findings

in a design medium. Probably most
useful for estimate refinement dur-
ing design. Could be useful for
visual applications that do not use
OO techniques.
Disadvantages: May not be available
early enough in the software life-
cycle to support effort estimation
prior to the completion of a design.
May be best used for estimate re-
finement during development or to
estimate the effort required for
maintenance activities.

Function Point-Related Measures
Function points have been developed
and used successfully for a number of
years. Classical function points and
extensions to function points could be
applicable to estimates of effort for
applications developed using VLs and
VPEs. The applicable measures could
include
• Function points, as defined in the

International Function Point Users
Group counting practices manual
[8].
Advantages: Provides a well-docu-
mented and understood approach to
derive estimates of size, effort, and
schedule for software applications.
Can be counted in a design me-
dium. Although function points
have been shown to be useful in the
information systems domain, some
advocates claim that extensions,
such as object points and feature
points, can be adapted for OO and
real-time applications.
Disadvantages: May not be available
early enough in the software life-
cycle to support effort estimation
until a reasonable amount of time
has been expended on design. For
maintenance, there has been little
success with the development of any
automated code analysis tool that
can count function points in a com-
pleted application. Function point
counting is complex and probably
will need some adaptation for VL
applications.

• Object points, e.g., counts of ob-
jects in an OO development envi-
ronment.

Advantages: Can be counted in a
design medium. Can be used to
develop size estimates for OO appli-
cations. May be useful for VL appli-
cations that do not use OO devel-
opment techniques. May be useful
in combination with counting ob-
jects on a visual palette.
Disadvantages: May not be available
early enough in the software life-
cycle to support effort estimation
until a reasonable amount of time
has been expended on design.
Counts of abstract objects and their
utility to estimate VL or VPE appli-
cations is unclear.

• Feature points, e.g., extensions to
function points to account for the
effort required to implement algo-
rithms for real-time applications.
Advantages: Provides a well-docu-
mented approach to derive estimates
of size, effort, and schedule for soft-
ware applications that have real-time
constraints.
Disadvantages: Requires interpola-
tion and may need to be combined
with other metrics, e.g., SLOC
estimates, to incorporate the algo-
rithmic information necessary to
develop cost and effort estimates.
Not easy to define or implement.
May not be available early enough
in the software lifecycle to support
effort estimation until a reasonable
amount of time has been expended
on design. May not be “countable”
in completed applications.

Next Steps
This research has identified a gap in the
state of software development practice
for estimation and measurement. Sev-
eral of the practitioners of VLs and
VPEs we contacted in the course of this
research (including government organi-
zations, academia, consultants, and
industry) share our interest in continu-
ing this work and have expressed the
desire to form a special interest group
or consortium.

We are actively seeking sponsorship
and collaborators to continue this
work. We have a plan to develop, using
the combined expertise of our collabo-
rators, and verify a metrics-based effort

estimation model for VLs and VPEs.
Once the estimation model is devel-
oped and validated, the technology will
be made available to the software com-
munity at large. u

Acknowledgments
This work was funded by the U.S. Air
Force Embedded Computer Resources
Support Improvement Program (ESIP).

During the course of this research,
we knocked on many doors to obtain
the information we required to perform
this research. To our surprise, we found
many doors open and with “welcome”
signs up. We acknowledge the interest
and support of
• Lt. Col. Joe Jarzombek (U.S. Air

Force), ESIP director.
• Bruce Allgood, ESIP office.
• Maj. Joe Stanko (U.S. Air Force),

Office of the Secretary of the Air
Force for Acquisition.

• Joe Kochocki, Draper Laboratory.
• Margret Burnett, Oregon State

University.
• Stan Colby, VZ Corp.
• Ed Baroth, Jet Propulsion Labora-

tory.
• Larry Putnam Jr., Quantitative

Software Measurement.

About the Authors
Paul A. Szulewski has
held a variety of engi-
neering-related technical
and management posi-
tions since 1973. He is
currently technical
program manager for

engineering at Mercury Computer Sys-
tems, Inc. of Chelmsford, Mass. Prior to
his current position, he was at The
Charles Stark Draper Laboratory, Inc. for
nearly 20 years and with Sanders Associ-
ates for five years. He specializes in
project planning, measurement, assess-
ment, and process definition. He is a
founding member of the National Soft-
ware Council, now known as the Center
for National Software Studies. He is a
distinguished reviewer for IEEE Software
and the Pentagon acquisition staff. He
has pioneered research in software metrics
and evaluation methods for products,
processes, and organizations.

see METRICS, page 30



30 CROSSTALK The Journal of Defense Software Engineering November 1998

Software Engineering Technology

Chicago, IL 60631
Voice: 773-467-2673
Fax: 773-594-2618
E-mail: rag@safco.com

C.R. Carlson holds a
doctorate from the Uni-
versity of Iowa. He is a
professor in the com-
puter science depart-
ment at Illinois Institute
of Technology. He has

published extensively in the fields of data-
base design, information architecture, and
software engineering. His research interests
include object-oriented modeling, design
and query languages, and software process
issues.

Computer Science Department
Illinois Institute of Technology
10 West 31st Street
Chicago, IL 60616
Voice: 312-567-5152
Fax: 312-567-5067

References
1. Burnstein, I., T. Suwanassart, and C.R.

Carlson, “The Development of a Test-
ing Maturity Model,” Proceedings of the
Ninth International Quality Week Con-
ference, San Francisco, May 21-24,
1996.

2. Burnstein, I., T. Suwanassart, and C.R.
Carlson, “Developing a Testing Matu-
rity Model,” CROSSTALK, Software Tech-
nology Support Center, Hill Air Force
Base, Utah; Part I: August 1996, pp.
21-24; Part II: September 1996, pp. 19-
26.

3. Paulk, M., C. Weber, B. Curtis, and M.
Chrissis, The Capability Maturity Model:
Guideline for Improving the Software
Process, Addison-Wesley, Reading,
Mass., 1995.

4. Zubrow, D., W. Hayes, J. Siegel, and D.
Goldenson, “Maturity Questionnaire,”
Technical Report, Software Engineering

METRICS, from page 25

Mercury Computer Systems
199 Riverneck Road
Chelmsford, MA 01824-2820
Voice: 978-256-0052 ext. 320
Fax: 978-256-3599
E-mail: paulski@mc.com
Internet: http://www.mc.com

Faye C. Budlong is a principal member of the
technical staff at The Charles Stark Draper
Laboratory, Inc. in Cambridge, Mass. She
provides expertise in software standards devel-
opment and application, software product
evaluations, software requirements analysis,
standard-compliant software, and document

development within Draper Laboratory. She has a bachelor’s
degree in mathematics from Roger Williams University in
Bristol, R.I. and a master’s degree in education from Northeast-
ern University in Boston, Mass.

The Charles Stark Draper Laboratory, Inc.
555 Technology Square
Cambridge, MA 02139
Voice: 617-258-2054
Fax: 617-258-3939
E-mail: budlong@draper.com
Internet: http://www.draper.com

References
1. Pandey, R.K. and M. Burnett, “Is It Easier to Write Matrix Ma-

nipulation Programs Visually or Textually? An Empirical Study,”

Proceedings of the 1993 IEEE Symposium on Visual Languages
(VL93), 1993, pp. 344-351.

2. Baroth, E. and C. Hartsough, “Visual Programming in the Real
World,” Visual Programming, M. Burnett, et al., eds., Manning
Publications, 1995.

3. Whitley, K.N., “Visual Programming Languages and the Empiri-
cal Evidence For and Against,” Journal of Visual Languages and
Computing, October 1996.

4. Baroth, E. and C. Hartsough, “Visual Programming Improves
Communication Among the Customer, Developer and Com-
puter,” Presentation at National Instruments User Symposium,
1995.

5. Nickerson, J.V., Visual Programming, Diss., New York Univer-
sity, New York, N.Y., 1994.

6. Glinert, E., “Towards Software Metrics for Visual Program-
ming,” International Journal of Man-Machine Studies, Vol. 330,
Academic Press, 1989, pp. 425-445.

7. Project Management for Object-Oriented Development, Austin
Software Factory, Austin, Texas, 1996.

8. Function Point Counting Practices Manual, International Func-
tion Point Users Group, Waterville, Ohio, Version 4, January
1994.

Note
1. Domain engineers are subject matter experts and may include,

for example, mathematicians and control engineers.

Institute, CMU/SEI-94-SR-7, June
1994.

5. Masters, S. and C. Bothwell, “A CMM
Appraisal Framework, Version 1.0,”
Technical Report, Software Engineering
Institute, CMU/SEI-95-TR-001, Feb-
ruary 1995.

6. ISO/IECJTC1/WG10, “SPICE Prod-
ucts,” Technical Report, Type 2, June
1995.

7. Homyen, A., “An Assessment Model to
Determine Test Process Maturity,”
Diss., Illinois Institute of Technology,
July 1998.

8. Puffer, J. and A. Litter, “Action Plan-
ning,” IEEE Software Engineering Tech-
nical Council Newsletter, Vol. 15, No. 2,
pp. 7-10.

9. Grom, R., “Report on a TMM Assess-
ment Support Tool,” Technical Report,
Illinois Institute of Technology, April
1998.


	Contents
	Factoring Process Improvement into the Awarding … 
	of Sustainment Contracts… 
	Lt. Col. Joe Jarzombek… 
	ESIP Director… 
	Driving Quality Through Parametrics… 
	Daniel D. Galorath, Lee Fischman, and Karen McRitchie… 
	Galorath Incorporated, The SEER Product Developers… 
	Using the Cost of Quality Approach for Software… 
	Herb Krasner… 
	Krasner Consulting… 
	 The Software Quality Certification Triangle… 
	Jeffrey Voas … 
	Reliable Software Technologies… 
	Smart Buying with the Federal Aviation Administration's Integrated Capability Maturity Model… 
	Linda Ibrahim… 
	Federal Aviation Administration… 
	Need Information on… 
	Software Quality Engineering?… 
	Metrics for Visual Software Development Initial Research and Findings… 
	Paul A. Szulewski, Mercury Computer Systems… 
	Faye C. Budlong, Draper Laboratory… 
	A Model to Assess Testing Process Maturity… 
	Ilene Burnstein, Ariya Homyen, Robert Grom, C.R. Carlson… 
	Illinois Institute of Technology… 


